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ABSTRACT: Kinetically stabilized 1,2-dihydrodisilenes
were successfully synthesized and isolated by the
introduction of sterically protecting bulky aryl groups.
These 1,2-dihydrodisilenes exhibit distinct SiSi double-
bond character in both solution and the solid state. The
Si−H bonds in these 1,2-dihydrodisilenes exhibit higher s
character than those of typical σ4,λ4-hydrosilanes. Moder-
ate heating of these 1,2-dihydrodisilenes in solution
resulted in their isomerization to the corresponding
trihydrodisilanes, with an intramolecular hydrogen migra-
tion as the rate-determining step.

The high reactivity of the Si−H bond in σ4,λ4-hydrosilanes
(R3Si−H) and its versatility in organic and organometallic

transformations have made these compounds one of the most
attractive classes of chemical feed stock among organosilicon
compounds.1 However, the structurally closely related σ3,λ4-
hydrosilanes RnESi(R)−H (E = main-group element) remain
an exotic and underdeveloped class of hydrosilanes. The
severely changed coordination environment around the silicon
atom in σ3,λ4-hydrosilanes relative to that in σ4,λ4-hydrosilanes
is expected to result in significant differences in the properties
and reactivity of σ3,λ4-hydrosilanes. Only a few examples of
σ3,λ4-hydrosilanes, such as mono- and dihydrosilenes2 as well as
monohydrodisilenes [e.g., lithiodisilene R1(H)SiSi(Li)R1 (I)
(R1  Si(i-Pr)Dis2, Dis = CH(SiMe3)2)] have been reported
to date.3 Despite the recent progress in the chemistry of
kinetically stabilized multiply bonded silicon compounds, stable
disilenes bearing more than one hydrogen substituent [e.g., 1,2-
dihydrodisilenes R(H)SiSi(H)R]4 still remain elusive.5

Synthetically, the key challenge for the successful isolation of
such multiply hydrogen-substituted disilenes lies in the effective
stabilization of the sterically exposed H−SiSi−H moiety.
Wiberg et al.6 have suggested the intermediate formation of 1,2-
dihydrodisilene R2(H)SiSi(H)R2 (II) (R2  SiH[Si(t-
Bu)3]2) on the basis of NMR data of the crude reaction
mixture. However, because of its facile thermal decomposition,
II could not be isolated, and the structure of II was assigned by
analysis of the decomposition product. Regardless of the

synthetic challenges involved, 1,2-dihydrodisilenes are desirable
targets for two important reasons: (i) the H−SiSi moiety is
expected to exhibit characteristics distinctly different from those
of σ4,λ4-hydrodisilanes [H−Si(R)2−SiR3], and (ii) the H−Si
Si−H moiety represents a powerful model for the parent
disilene, H2SiSiH2, allowing fundamental insights into the
intrinsic nature of the bonding situation in H2SiSiH2. The
successful application of the bulky aryl groups Bbp and Bbt in
the kinetic stabilization of a variety of compounds containing
low-coordinated heavier main-group elements7 prompted us to
investigate their potential for the steric protection of the labile
H−SiSi−H moiety. Herein we report the synthesis,
structure, spectroscopic properties, and thermal isomerization
of kinetically stabilized 1,2-dihydrodisilenes 1a and 1b.

Reduction of dibromosilanes 2a and 2b with 2 equiv of
lithium naphthalenide (LiNaph) at −110 °C in THF/Et2O/
hexane (2a) or THF/hexane (2b) afforded 1,2-dihydrodisilenes
1a and 1b as pale-yellow solids in yields of 57 and 32%,
respectively (Scheme 1). Both in the solid state and in solution
(C6D6), 1a and 1b did not show any susceptibility toward
decomposition below 25 °C.
Structural parameters of 1a in the solid state were

determined by X-ray diffraction analysis (Figure 1a).8 Disilene
1a has a crystallographic center of symmetry at the middle of
the Si−Si bond. Hydrogen atom H1 was located on the
difference Fourier maps and refined isotropically. The Si−Si
bond length in 1a [2.1708(6) Å] is contracted by 8% relative to
that in the tetrahydrodisilane Bbp(H)2Si−Si(H)2Bbp (3)
[2.3633(2) Å] and comparable to those in previously reported
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Scheme 1. Synthesis of 1,2-Dihydrodisilenes 1a and 1b

Communication

pubs.acs.org/JACS

© 2012 American Chemical Society 4120 dx.doi.org/10.1021/ja300694p | J. Am. Chem. Soc. 2012, 134, 4120−4123

pubs.acs.org/JACS


disilenes (2.138−2.360 Å),9 indicating significant SiSi
double-bond character for 1a in the crystalline state. In
addition, 1a exhibits a trans-bent structure, with a trans-bent
angle (θ) of 6.3° around the Si1 atom. The molecular structure
of 1a was reproduced by density functional theory (DFT)
calculations,10 and the calculated Si1−Si1* bond length (2.157
Å) and trans-bent angle (2.9°) were in good agreement with
those observed experimentally.
The 29Si NMR spectra of 1a and 1b in C6D6 showed signals

in the low-field region (1a, δSi = 63.3 ppm; 1b, δSi = 61.8 ppm),
characteristic of disilenes with adjacent carbon substituents. In
the 1H NMR spectra of 1a and 1b (C6D6), the hydrogen nuclei
attached to the low-coordinated silicon atoms resonated at 6.04
and 6.11 ppm respectively. Both these values are low-field
shifted relative to those of σ4,λ4-hydrosilanes (e.g., δH = 4.83
ppm for 3 in C6D6), reflecting the magnetic anisotropy effect of
the SiSi π electrons.11 The observed 1JSiH values of the H−
SiSi−H moieties in 1a (216 Hz) and 1b (210 Hz) are larger
than those in σ4,λ4-hydrosilanes such as 3 (188 Hz), suggesting
increased s character of the Si−H bonds. In contrast, previously
reported hydrogen-substituted disilenes I and II exhibited
much smaller 1JSiH values (I, 155 Hz;3a II, 149.8 Hz6),
suggesting a decrease in the s character of the Si−H bonds due
to the presence of the electropositive silyl groups.12 Similarly,
the observed 2JSiH values for the H−SiSi−H moieties in 1a
(16 Hz) and 1b (16 Hz) were larger than those in 3 (6.5 Hz)
and II (0.9 Hz), corroborating the increased s character of the
Si−H bonds in 1a and 1b. Independently, natural bond orbital
(NBO) calculations supported the greater s character of the
Si−H bonds in 1a [σSiH = 0.6591Si(sp2.50) + 0.7520H(s)]
relative to those in 3 [σSiH = 0.6557Si(sp3.12) + 0.7550H(s) and
0.6506Si(sp3.20) + 0.7594H(s)].10

The UV−vis spectra of 1a and 1b in hexane exhibited lowest-
energy absorption maxima λmax at 411 nm (ε = 2.1 × 104 M−1

cm−1) and 421 nm (ε = 2.0 × 104 M−1 cm−1) respectively,
which can be assigned to π−π* electron transitions in the Si
Si moiety. The almost identical λmax values for 1a (412 nm) and
1b (423 nm) in THF would exclude coordination of THF to
these disilenes. In the solid-state Raman spectra, 1a and 1b
exhibited Raman lines at 566 and 575 cm−1, respectively.
Theoretical calculations for 1a estimated the SiSi vibrational
frequency to be 588 cm−1,10 which is in good agreement with
the experimentally observed values. The SiSi stretching
frequencies for previously reported carbon-substituted disilenes

are known to be observed in the range from 500 to 600 cm−1,13

indicating that 1a and 1b contain distinct SiSi double bonds
in the solid state. The IR spectra of 1a and 1b in a KBr disk
showed Si−H vibrational frequencies at νSiH = 2160 cm−1 (1a)
and 2151 cm−1 (1b). The observed values are again in good
conformity with the calculated value for 1a (2168 cm−1) and
slightly larger than those for σ4,λ4-hydrosilanes (e.g., 2122 cm−1

for Ph3SiH).
2a

Moderate heating of solutions of 1a and 1b in C6D6 to 80 °C
resulted in the isomerization of these disilenes into the
corresponding disilanes 4a and 4b (Scheme 2).14 The
formation of 4a and 4b can be logically explained by a
mechanism proceeding via an initial 1,2-hydrogen migration to
form intermediate silylsilylenes 5a and 5b, followed by a
subsequent insertion of the silylene moiety into the benzylic
C−H bonds of the sterically demanding CH(SiMe3)2 groups.
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A similar mechanism was proposed for the decomposition of
transient disilene II.6,16

Kinetic studies of the thermolysis of 1b in hexane or THF by
UV−vis spectrometry revealed that the isomerization is a first-
order, unimolecular reaction. For hexane solutions, the
activation parameters ΔH⧧ and ΔS⧧ were estimated to be
20.6(5) kcal mol−1 and −15(2) cal K−1 mol−1. The negative
value of ΔS⧧ indicates a considerable conformational change of
1b during the rate-determining step. For THF solutions, the
activation parameters were determined to be ΔH⧧ = 23.6(7)
kcal mol−1 and ΔS⧧ = −6(2) cal K−1 mol−1. The small negative
value of ΔS⧧ does not support any involvement of THF
molecules during the rate-determining step. The isomerization
mechanism of 1b was further investigated using DFT
calculations.10 Figure 2 shows the computationally generated
energy profile for the thermal isomerization of 1b. The terminal
hydrogen atom H2 in 1b initially moves via transition state TS1
toward a bridging position above the SiSi π plane, resulting
in the formation of intermediate 6b. The calculated activation
parameters for this step (ΔH⧧ = 19.4 kcal mol−1, ΔS⧧ = −2.4
cal K−1 mol−1) are in close agreement with the experimentally
estimated values, suggesting that this step is rate-determining.
Although the transition state between 6b and 5b (TS2) could
not be located, the necessary activation barrier was estimated to
be sufficiently low to allow fast interconversion between 5b and
6b prior to the intramolecular cyclization.17,18 The final step
(5b → 4b) proceeds via TS3 with a large exothermicity (−36.2
kcal mol−1), suggesting that the isomerization from 1b to 4b
should proceed readily. The activation barrier for this step
(ΔH⧧ = 16.3 kcal mol−1) was found to be smaller than that for
the first step. Moreover, the activation entropy of this step was

Figure 1. (a) Molecular structure of 1a. Thermal displacement
ellipsoids are drawn at the 50% probability level. H atoms except for
H1 and H1* have been omitted for clarity. Selected bond lengths (Å)
and angles (deg): Si1−Si1* = 2.1708(6), Si1−C1 = 1.8843(10), Si1−
H1 = 1.45(2), Si1*−Si1−C1 = 126.87(4), C1−Si1−H1 = 114.5(9),
H1−Si1−Si1* = 118.1(9), Si1*−Si1−C1−C2 = 81.85(9)°. (b)
Experimental and calculated SiSi bond lengths and trans-bent
angles (θ) in 1a.

Scheme 2. Thermolysis of 1a and 1b
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calculated to be close to zero (−0.06 cal K−1 mol−1), suggesting
that this final step, intramolecular cyclization, is not the
experimentally observed rate-determining step. In conclusion,
the computational results support the assumption that a gradual
isomerization of 1,2-dihydrodisilenes 1a and 1b via a 1,2-
hydrogen shift is what was observed in solution.
In summary, we have reported the synthesis, structure, and

spectroscopic properties of kinetically stabilized 1,2-dihydrodi-
silenes 1a and 1b. Both in the solid state and in solution, 1a and
1b retain a pronounced SiSi double bond, and their Si−H
bonds have higher s character than those of σ4,λ4-hydrosilanes.
Heating 1a and 1b resulted in isomerizations via intramolecular
hydrogen migrations, resembling the hydrogen-shift equili-
brium suggested for the parent disilene H2SiSiH2.
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